PHYSIOLOGY

Physiology Mock Test			
Topic	Lecture	Duration	Size (MB)
AIIMS Physiology			
	Lec-01	0:48:41	166
	Lec-02	0:41:21	141
	Lec-03	0:41:28	142
	Lec-04	0:38:44	132
	Lec-05	0:50:57	174
	Lec-06	0:42:19	144
	Lec-07	0:43:58	150
	Lec-08	0:20:06	69.2
Physiology Test 490			
	Lec-01	0:40:36	138
	Lec-02	0:39:55	136
	Lec-03	0:39:56	136
	Lec-04	0:39:06	133
	Lec-05	0:39:05	136
	Lec-06	0:32:12	110

Physiology Notes	
Physiology Notes	No. of Pages = 188

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY Cardio Physiology	Lec 01	 Circuitry of the Cardiovascular System Direction of blood flow Components of the vasculature Arteries Arterioles Capillaries Venules Veins Velocity of blood flow Poiseuille's equation Reynold's Number Compliance Mean Pressure in the systemic circulation 	0:36:43	125
	Lec 02	 Systolic pressure Diastolic pressure Pulse pressure Mean arterial pressure Venous pressure PR interval QRS complex QT complex ST segment T wave Cardiac action potentials Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Sinoatrial (SA) node AV node Conduction velocity Absolute refractory period (ARP) Relative Refractory Period (RRP) 	0:42:50	146
	Lec 03	 Chronotropic effects Dromotropic effects Parasympathetic effects on heart rate and conduction Negative chronotropic effect Positive dromotropic effect Myocardial cells structure Sarcomere Intercalated disks Gap junctions T tubules Sarcoplasmic reticulum (SR) Steps in excitation-contraction coupling Factors that increase contractility Factors that decrease contractility 	0:39:00	133

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 04	 Length-tension relationship in the ventricles Sarcomere Length Frank-Starling relationship Ventricular pressure-volume loops isovolumetric contraction Ventricular ejection isovolumetric relaxation Ventricular filling Venous return, or vascular function, curve 	0:42:30	145
	Lec 05	 Cardiac output Ejection fraction Stroke work Cardiac oxygen (O2) consumption Measurement of cardiac output by the Fick principle Cardiac Cycle 7 Phases Atrial systole Isovolumetric ventricular contraction Rapid Ventricular ejection 	0:37:31	128
	Lec 06	 Reduced Ventricular ejection Isovolumetric ventricular relaxation Rapid Ventricular Filling Reduced Ventricular filling (diastasis) Mitral stenosis Aortic valve stenosis 	0:47:31	142
	Lec 07	 Regulation of Arterial pressure Baroreceptor reflex Responses of the vasomotor centre Renin-angiotensin-aldosterone system Angiotensin-converting enzyme Cerebral ischemia Cushing reaction Chemoreceptors in the carotid and aortic bodies Vasopressin [antidiuretic hormone(ADH)] Atrial natriuretic peptide (ANP) Microcirculation and Lymph Structure of Capillary beds Fluid exchange across capillaries Sample calculations using the Startling equation Lymph, Edema Endothelium-derived relaxing factor (EDRF) 	0:39:48	136
	Lec 08	 Local (intrinsic) control of blood flow Examples of active hyperemia Histamine,Bradykinin Serotonin (5-hydroxytrytamine) Prostaglandins Coronary Circulation Carotid sinus baroreceptors Orthostatic hypotension Summary of Effects of Exercise Chemoreceptors in the carotid and aortic bodies, Reynold's Number ADH,Summary of Responses of Hemorrhage 	0:40:35	138

Subscribe through **Medicos E-Learning** www.medicoselearning.com (in association with **Medico Abroad**, Hyderabad, AP, India) www.medicoabroad.in E-mail:medicoabroad@gmail.com

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY Endocrine Physiology	Lec 01	 Endocrine Physiology Overview of Hormones Radioimmunoassay Regulation of hormone secretion Negative feedback Positive feedback Regulation of receptors Down-regulation of receptors Up-regulation of receptors Cell Mechanisms and Second Messengers G protein Adenylate cyclase mechanism 	0:40:13	137
	Lec 02	 Phospholipase C Ca2+ Calmodulin mechanism Steroid hormone and thyroid hormone mechanism Pituitary Gland (Hypophysis) Hypothalamic-Pituitary relationships Posterior pituitary hormones Hormones of the anterior lobe of the pituitary Growth hormone (somatotropin) Somatomedins Actions of growth hormone Direct actions of growth hormone via IGF Pathophysiology of growth hormone Prolactin Regulation of prolactin secretion Actions of prolactin Regulation of prolactin secretion ADH Regulation of ADH secretion Oxytocin Synthesis of thyroid hormones Actions of thyroid hormones Actions of thyroid hormones 	0:44:28	152
	Lec 03	 Adrenal Cortex and Adrenal Medulla 21-Carbon steroids 19-Carbon steroid-Testosterone 18-Carbon steroids Regulation of secretion of adrenocortical hormones Hypothalamic control - corticotropin-releasing hormone (CRH) 	0:38:12	130

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 04	 Renin-angiotensin-aldosterone system Decreases in blood volume Renin Angiotensin-I Angiotensin-II Aldosterone Mechanism of aldosterone action on sodium reabsorption at Model of a putative amiloride-sensitive sodium channel Actions of glucocorticoids (cortisol) Stimulation of gluconeogenesis Actions of mineralocorticoids (aldosterone) Pathophysiology of the adrenal cortex Adrenocortical insufficiency Cushing's syndrome 	0:39:40	135
	Lec 05	 21b-Hydroxylase deficiency Virilization in Women Endocrine pancreas Glucagon and Insulin Organization of theendocrine pancreas Cell Types of the Islets of Langerhans Glucagon Actions of glucagon Regulation of Glucagon Secretion Insulin Regulation of Insulin secretion Mechanism of insulin secretion Insulin receptor Actions of insulin Insulin decreases blood glucose concentration Insulin decreases blood fatty acid and ketoacid concentrations Insulin decreases blood Amino acid concentration Insulin decreases blood K+ concentration Insulin pathophysiology - diabetes mellitus Somatostatin 	0:40:32	138
	Lec 06	 Diagnosis of GDM with a 100 g glucose load ADA criteria for the diagnosis of diabetes mellitus, impaired glucose tolerance (IGT), and impaired fasting glucose (IFG) Classification of glucose transport and HK activity according to their tissue distribution and functional regulation Paratharmone Positive Ca2+ balance Negative CA2+ balance Parathyroid hormones (PTH) Distribution of Calcium, Phosphorus, and Magnesium RANKL receptor activator of nuclear factor kappa B ligand Pathophysiology of hypercalcemia 	0:38:33	132

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 07	 Actions of PTH Regulation of PTH Biosynthesis and Secretion Pathophysiology of PTH MENI Syndrome MENII Syndrome Humoral hypercalcemia of malignancy Disordered calcium homeostasis in granulomatous disease Management of Acute Hypercalcemia Pattern of bone loss in primary hyperparathyroidism Hypoparathyroidism Pseudohypoparathyroidism type Ia-Albright's hereditary Osteodystrophy Pathophysiological basis for X-linked hypophosphatemia Pathophysiology of PTH Metabolic Activation of Vitamin D 	0:39:26	134
	Lec 08	 Actions of 1,25-dihydroxycholecalciferol Calcitonin Sexual Differentiation Gonadal sex Phenotypic sex Male phenotype Female phenotype Male Reproduction Synthesis of testosterone Leydig cells 5a-reductase inhibitors (finasteride) Regulation of tests Hypothalamic control-GnRH Anterior pituitary-FSH and LH FSH acts on the Sertoli cells Negative feedback control-testosterone and inhibin Factors that influence the level of SHBG in plasma Action of testosterone or dihydrotestosterone Puberty Female Reproduction Theca cells A human primordial follicle (PF) Secondary follicle four subtypes of granulosa cells Theca interna Theca interna Theca interstitial cells Regulation of the ovary Hypothalamic control - GnRH Anterior lobe of the pituitary - FSH and LH Negative feedback control - estrogen and progesterone Actions of estrogen, Actions of progesterone Menstrual cycle- Follicular phase Ovulation (day 15) Luteal phase (days 15-28) Secondary FSH rise in women Two Gonadotropin-Two Cell Concept" of follicle estrogen production 	0:39:28 0:41:20	134

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 10	 Two-cell, two-gonadotropin hypothesis Menses (day 1-4) Pregnancy Fertilization Parturition Lactation Syncytiocytotrophoblasts Decidua 	0:47:18	161
Respiratory Physiology	Lec 01	 Transpulmonary pressure recoil pressure of the lung Pleural pressure Alveolar pressure Functional residual capacity Total lung capacity 	0:42:17	144
	Lec 02	 Question: If someone inhales to 50% TLC During Inspiration End Inspiration 	0:17:05	59
	Lec 03	 Forced expiratory volume (FEV1) Surfactant Neonatal respiratory distress syndrome Resistance of the airways Lung Volume Breathing cycle - description of pressures and airflow During Inspiration End Inspiration During Expiration Compliance of Lung Laplace's Law Lung Volume and Capacities Tidal Volume Inspiratory reserve volume Expiratory reserve volume Residue Volume Dead Space Physiologic dead space Ventilation rate: Minute ventilation and Alveolar ventilation Lung Capacities Functional Residual Capacity Total Lung Capacity (TLC) Forced expiratory volume (FEV1) 	0:41:00	140
	Lec 04	 Relationships between pressure airflow and resistance Contraction or Relaxation of branchial smooth muscle Lung Volume Viscosity or density of inspired gas Case Study FEV1/FVC Lung Disease Restrictive Lung Disease 	0:39:34	135

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 05	 COPD Fibrosis Gas Exchange Dalton's law of partial pressures Partial pressure of O2 and CO2 Diffusion of gases such as O2 and CO2 Perfusion-limited and diffusion-limited gas exchange Oxygen Transport Hemoglobin Characteristic - globular protein of four subunits O2 capacity O2 content 	0:39:18	134
		 AaDO2 or AaDO2 Causes of High AaDO2 Hemglobin - O2 dissociation curve Why Sigmoid shape of the curve 		
	Lec 06	 Oxygen Cascade CO2 Transport Forms of CO2 Distribution of CO2 in blood CO2 Dissociation curve Causes of Hypoxia Pulmonary Circulation Pulmonary Vascular Resistance 	0:39:35	135
	Lec 07	 Distribution of Pulmonary blood flow Zone 1-blood flow is lowest Zone 2-blood flow is medium Zone 3-blood flow is highest Regulation of pulmonary blood flow hypoxic vasoconstriction Fetal pulmonary vascular resistance Capillary fluid exchange Shunts Right to left shunts Left to right shunts Ventilation/Perfusion Defects V/Q ratio V/Q ratios in different parts of the lung V/Q ratio in airway obstruction Conrol of Breathing Central control of breathing (brain stem and cerebral cortex) Ventral respiratory group Dorsal Respiratory Group Apneustic centre Pneumotaxic center Cerebral cortex 	0:40:04	136
	Lec 08	 Chemoreceptors for CO2, H+, and O2 Central chemoreceptors in the medulla Peripheral Chemoreceptors in the carotid and aortic bodies 	0:20:02	69

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 09	 Comparison of Central and Peripheral Chemoreceptors Lung Stretch receptors Hering-Breuer reflex Juxtacapillary receptors Integrated Responses of the Respiratory System Exercise Summary of Respiratory Responses to Exercise Adaptation to high altitude Summary of Adaptation to High altitude 	0:13:13	46
Renal and Acid and Base Physiology	Lec 01	 Renal and Acid and Base Physiology Body Fluids Total body water Distribution of water Intracellular fluid (ICF) Extracellular fluid Body Fluid Fraction of Markers Used to Major 	0:39:45	135
	Lec 02	 Measuring the volumes of the fluid compartments Mannitol Evans blue Shifts of water between compartments Basic principles 	0:37:22	128
	Lec 03	 Changes in volume and Osmolarity of Body Fluids Renal Clearance, Renal Blood Flow (RBF), and Glomerular Filtration Rate (GFR) Angiotensinconverting enzyme (ACE) inhibitors Mechanisms fro autoregulation includes Tubuloglomerular feedback Measurement of renal plasma flow (RPF) clearance of paraaminohippuric acid (PAH) Measurement of RBF Measurement of RBF Measurement of GFR clearance of 	0:43:23	148
	Lec 04	 Examples of Calculation of GFR Estimates of GFR with blood urea nitrogen (BUN) and serum Filtration fraction Determining GFR-Starling forces PGC is glomerular capillary hydrostatic pressure PBS is Bowman's space hydrostatic pressure Sample calculation of ultrafiltration pressure with the Starling equation. III. Reabsorption and Secretion Calculation of reabsorption and secretion rates 	0:40:44	139

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 05	 Reabsorption of glucose in the proximal tubulae Na+ - glucose cotransport Excretion of glucose Threshold Splay Tm curve for PAH - a secreted substance Secretion of PAH Substances with the highest clearances Substances with the lowest clearances Substances with clearances equal to GFR Extracellular fluid volume (ECV) Reabsorption of glucose family The secretion or PAH family comprises 	0:38:58	130
	Lec 06	 NaCl Regulation Filtration slits Juxtaglomerular Cells Macula Densa Cells Mesanglial Cells Cells of the Collecting Duct Intercalated Cells Principal Cells Na+ reabsorption along the nephron Proximal tubule Isosmotic reabsorption water and salt permeable Renal Active Transport Primary Active Transport Secondary Active (Facilitated Transport) Proximal tubule Middle and late proximal tubules special features Glomerulotubular balance in the proximal tubule 	0:39:36	135
	Lec 07	 Mechanism of glomerulotubular balance Starling forces in the peritubular capillary blood Effects of ECF volume on proximal tubular reabsorption Bicarbonate handling in the early proximal tubule Middle Proximal Tubule Late Proximal Tubule Summary of Proximal Tubule Reabsorption 	0:25:46	84
	Lec 08	 Without considering the amount of water reabsorption K+ Reabsorption Renal Regulation of Urea, Phosphate, Calcium and Magnesium Parathyroid hormone (PTH) Loop diuretics (e.g., furosemide) Magnesium (Mg+) Concentration and Dilution of Urine Regulation of plasma Production of concentrated urine Corticopapillary osmotic gradient high ADH Courtercurrent multiplication in the loop of Henle Aquaporins 	0:36:57	126

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 09	 Proximal Tubular Reabsorption Summary of Proximal Tubule Reabsorption Amino Acids, glucose, and Cl- Thick ascending limb of the loop of Henle Thin Descending and Ascending Limbs Late Distal Tubule Aldosterone Distal Tubule Antidiuretic hormone (ADH) increases H2O permeability Aquaporin Summary of tubular solute transport ECF volume is regulated by the interactions of the renin-angio- tensin-aldosterone system 	0:40:52	139
	Lec 10	 K+ Regulation Shifts of K+ between the ICF and ECF Renal Regulation of K+ balance Glomerular capillaries Proximal tubule Distal tubule and collecting duct Secretion of K+ Mechanism of distal K+ secretion Aldosterone Thiazide and loop diuretics increase K+ secretion K+ - sparing diuretics Changes in Distal K+ Secretion 	0:36:55	126
	Lec 11	 Corticopapillary osmotic gradient high ADH Countercurrent multiplication in the loop of Henle Aquarins Vasa recta Thich ascending limb of the loop of Henle - high ADH Effects of ADH on the Na+/K+/2CI- Effects of furosemide on Na+/K+/2CI- Early distaltubule - high ADH Late distal tubule - high ADH Collecting ducts - high ADH Production of dilute urine Proximal tubule - no ADH Late distal tubule and collecting ducts - no ADH Free-water clearance (CH2O) (CH2O) (Free-water clearance) is negative Calculation of CH2O Urine that is isosmotic to plasma (isosthenuric) Urine that is hyperosmotic to plasma (high ADH) Summary of ADH Pathophysiology 	0:47:17	161

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 12	 Step 1:- Na+ is transported out (Na+/K+/2Cl- pump) Acid-Base Balance Acid production Buffers Extracellular buffers Intracellular buffers Using the Henderson-Hasselbalch equation to calculate pH 	0:40:53	140
	Lec 13	 Titration curves Reabsorption of filtered HCO3- Regulation of reabsorption of filtered HCO3- Physiologic basis for the renal compensation for respiratory acidosis Excretion of fixed H+ Excretion of H+ as titratable acid (H2PO4-) Excretion of H+ as NH4+ What is Renal Tubular Acidosis? General Principles 	0:32:51	112
	Lec 14	 Renal Tubular Acidosis General Principles Proximal Tubular Physiology Schematic Representation of Ammonia Recycling within the renal medulla Collecting Tubule Physiology 	0:31:19	107
	Lec 15	 Collecting Tubule Physiology Types of RTA Proximal RTA Differential Diagnosis of pRTA Conducted Distal RTA Differential Diagnosis of dRTA 	0:28:18	97
	Lec 16	 Differenctial Diagnosis of dRTA Secretory dRTA Distal RTA Type IV RTA Metabolic acidosis Normal Anion GAP Urinary Anion Gap=(UA-UC)=[Na+]+[K+]-[Cl-] Osmolar Gap Calculated Osmolarity 	0:43:21	148
	Lec 17	 Calculated Osmolarity Metabolic acidosis Lactic acidosis Type A (Tissue hypoxia apparent or probable) Type B (Tissue hypoxia not apparent or unlikely) Calculation : AG (mEq/L) 	0:38:01	130
	Lec 18	 Metabolic Acidosis increased Anion GAP Respiratory alkalosis Chronic respiratory alkalosis Calculating Compensatory Responses to Simple Disorders 	0:36:34	125

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 19	 Metabolic alkalosis Renal correction of metabolic alkalosis Respiratory acidosis Adult respiratory distress syndrome COPD In Chronic respiratory acidosis Diuretics 	0:31:15	107
Gastrointestinal Physiology	Lec 01	 Structure of the gastrointestinal (GI) tract Epithelial cells Muscularis mucosa Circular muscle Longitudinal muscle Submucosal plexus (Meissner's plexus) and myenteric plexus Innervation of the GI tract Innervation of the GI tract by intrinsic and extrinsic sensory neurons Overall effects of PS stimulation SOURCES Sympathetic nervous system Regulatory Substances in the Gastrointestinal Tract 	0:40:33	138
	Lec 02	 Gastrin Actions of gastrin Stimuli for secretion of gastrin Inhibition of gastrin secretion Zollinger-Ellison syndrome (gastrinoma) CCK Actions of CCK Stimuli for the release of CCK Secretin GIP Somatostatin Histamine Neurocrines 	0:40:37	139
	Lec 03	 VIP GRP (bombesin) Enkephalins (met -enkephalin and leu-enkephalin) Gastrointestinal Motility Segmentation Phasic Contractions Peristalsis Mechanism of slow wave production Frequency of slow waves Chewing, swallowing, and esophageal peristalsis Esophageal motility Upper one third Sequence of events occurs as food moves into and down the esophagus A Secondary peristaltic contraction 	0:39:29	134

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 04	 Esophageal Motility: Hormonal Influences Clinical correlations of esophageal motility Gastric reflux (heartburn) Gastric motility Gastric emptying Small intestinal motility Enteric Reflex Secretory Reflex Gastro-enteric reflex Gastro-enteric reflex Gastro and deuodeno colic reflexes Ileo-gastric reflex Intestino-interstinal reflex Haustra Cecum and proximal colon Rectum, anal canal, and defection Disorder of large intestinal motility Megacolon (Hirschprung's disease) Vomiting 	0:31:12	106
	Lec 05	 Gastrointestinal Secretion Salivary secretion Composition of Saliva The Composition of saliva varies with the salivary flow rate Formation of saliva Sjogren-Xerostomia Reduced salivary flow rate Saliva production, Gastric secretion Mechanism of gastric H+ secretion Gastric Cells Types and their Secretions Vagotomy Gastrin Potentiating effects of Ach, histamine, and gastrin on H+ secretion Histamine Inhibition of gastric H+ secretion Negative feedback Duodenal ulcers Zollinger - Ellison syndrome 	0:45:00	154
	Lec 06	 Cimetidline, Pancreatic secretion Composition of pancreatic secretion Ductal cells Stimulation of pancreatic secretion CCK Ach (via vagovagal reflexes) Summary of Gastrointestinal (GI) Bile secretion and gallbladder function Composition and function of bile Formation of bile,Cholertic agents,Primary bile acids Contraction of the gallbladder CCK Digestion and Absorption,Maltase Absorption of carbohydrates Glucose and galactose,Lactose intolerance Clinical disorders of carbohydrate absorption Digestion of proteins,c.Pepsin 	0:43:10	147
	Lec 07		0:19:21	66

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY Cell Physiology		 Cell membrances Lipid-soluble substances Water-soluble substances Proteins Integral proteins Peripheral proteins Intercellular connections Tight junctions (zonula occuludens) Gap junction Transport Across Cell Membranes Sample calculation for diffusion Permeability Factors that increase permeability Characteristics of Different Types of Transport Carrier-mediated transport Stereospecificity Saturation 		Size 132
		 Transport maximum (Tmax) Facilitated diffusion Characteristics of faciliated diffusion Example of facilitated diffusion 		
	Lec 02	 Example of facilitated diffusion ATP-binding cassette (ABC) system of transport Primary active transport *characteristics of primary active transport Examples of primary active transport Ca2+-ATPase (or Ca2+ pump) H+, K+, -ATPase (or proton pump) Secondary active transport *characteristics of secondary active transport Na+glucose contransport Na+glucose contransport Na+glucose contransport Example of Na+ - glucose contransport Example of Na+ - glucose contransport Example of Na+ - glucose contransport Example of Na+ - Ca2+ countransport or exchange Isotonic solution Hypertonic solution Hypertonic solution Osmosis Osmolarity Calculating osmotic pressure (van't Hoff's law) Reflection coefficient Diffusion Potential Ion channels are selective Ion channels may be open or closed Voltage-gated channels Ligand-gated channels 	0:44:21	151

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
PHYSIOLOGY	Lec 03	 Diffusion and equilibrium potentials Examples of a Na+ diffusion potential Na+ equilibrium potential Example of a Cl- diffusion potential Cl- equilibrium potential Using the Nernst equation to calculate equilibrium potentials Sample calculation with the Nernst equation Resting membrane potential Action potentials Depolarization Action potential (Threshold) 	0:27:00	93
	Lec 04	 Ionic basis of the nerve action potential Repolarization of the action potential Refractory periods Absolute refractory period Relative refractory period Accommodation Propagation of action potentials Neuromuscular and Synaptic Transmission General Neuromuscular junction Deplorization of the presynaptic presynaptic terminal and Ca2+ uptake Agents Affecting Neuromuscular Transmission Disease-myasthenia gravis 	0:41:42	142
	Lec 05	 Disease-myasthenia gravis Synaptic transmission One-to-one synapses Many-to-one synapses Excitatory neurotransmitters Summation at synapses Ficilitation, argumentation, and post-tetanic potentiation Glutamate Receptor types NMDA receptor properties Ionotropic synapse: Metabotropic synapse Neurotransmitters: Ach, Norepinephrine, epinephrine dopamine 	0:34:28	118
	Lec 06	 Metabolites Histamine,GABA,Glycine,Skeltal Muscle Thick filaments,Thin filaments,Troponin Summary of Events in Muscle Contraction and Relaxation,Titin,T tubules 	0:43:26	148
	Lec 07	 SR internal tubular structure Junctophilins (JP) Calsequestrin (CSQ) Mechanism of tetanus Length-tension relationship Force-velocity curve Isometric Contractions Active tension,Depolarisation Force-velocity relationship Types of smooth muscle 	0:36:06	123

