

Bio Chemistry Mock Test			
Topic	Lecture	Duration	Size (MB)
AllMS Bio-Chemistry			
	Lec-01	0:37:12	127
	Lec-02	0:41:43	142
	Lec-03	0:40:22	138
	Lec-04	0:21:36	74.3
Bio-Chemistry Test 569			
	Lec-01	0:42:07	144
	Lec-02	0:38:54	133
	Lec-03	0:34:58	119

Bio Chemistry Notes	
Bio Chemistry Notes	No. of Pages = 90

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
BIOCHEMI STRY Amino Acids	Lec 01	 Classify the amino acids N0n-Polar Amino Acids Amino acid with uncharged polar side chains Amino acids with acidic side chains 	0:29:55	102
		 optical properties of amino acids ACIDIC AND BASIC PROPERTIES OF AMINO ACIDS Handerson -Hasselbalch euqation. 		
	Lec 02	 Buffers Titration of an amino acid Isoelectric point applications of the Henderson Hasselbalch equation 	0:28:12	97
Structure of Proteins	Lec 03	 Structure of Proteins Peptide bonds Characteristics of the peptide bond Polarity of the peptide bond Determination of a protein's primary structure by DNA sequencing SECONDARY STRUCTURE OF PROTEINS α- helix,β-sheet,β-bend Parellel and antiparellel sheets Nonrepetitive secondary structure Supersecondary strcture (motifs) TERTITARY STRUCTURE OF GLOBULAR PROTEINS Domains Interactions stabilizing tertiary structure A disulfide bond Hydrophobic interactions: Hydrogen bonds Ionic interactions: Protein folding Role of chaperones in protein folding 	0:39:13	134
Structure & Globular Proteins	Lec 04	 Quality of stucture of proteins Denature of Proteins Protein Misfolding Amyloidoses Alzheimer disease Prion disease Structure and function of hemoglobin Hemoglobin A Quaternary structure of hemoglobin T form R form Binding of oxygen to myoglobin and hemoglobin Oxgen dissociation curve Cooperativity of Oxygen Significance of the sigmoidal O2 dissociation curve Bohr effect Mechamism of the bohr effect effect of 2/3-bisphosphoglycerate on oxygen affinity 	0:41:22	141

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
BIOCHEMI STRY Globular Proteins	Lec 05	 Shift of the oxygen -dissociation curve Response of 2,3-BPG Levels to chronic hypoxia or anemia: Binding of co2 Response of 2,3-BPG Levels to chronic hypoxia or anemia: Bindingh of CO Fetal hemoglobin(Hbf) Hba synthesis Hemoglobin A2(HbA2): Hemoglobin A1c ORGANIZATION OF THE GLOBI GENES α-Gene family β-Gene family steps in globin chain synthesis HEMOGLOBINOPATHIES Sickle-cell anemia (Hbs) Thalassemia syndromes Sickle cell trait Amino acid substitution in Hbs Variables that increase sickling Hemoglobin C disease hemoglobin SC disease D.Methemoglobinemias Thalassemias β-Thalassemias α-Thalassemias α-Thalassemias 	0:42:17	144
Globular & Fibrous Proteins	lecture 06	 COLLAGEN Fibril-forming collagens netwrok-forming collagen strucutral of collagen Biosynthesis of collagen Extracellular cleavage of procollagen molecules: gradation of collagen Ehlers-danlos syndrome(EDS) Osteogenesis imperfecta(OI) Structure of elastin Tropoelastin Mutations in the fibrilling gene α-Antitrypsin Emphysema resulting from α1-AT deficiency 	0:27:48	95

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
BIO	Lec 07	PROPERTIES OF ENZYMES	0:33:22	114
CHEMISTRY		◆ ribozyme		
Enzymes		Active sites		
,		Cofactors		
		Regulation		
		HOW ENZYMES WORK		
		FACTORS AFFECTING REACTION VELOCITY		
		MAXIMAL VELOCITY		
		Hyper shape of the enzyme kinetics curve		
		Effect of PH on the ionization of the activesite:		
		Effect of PH on enzyme denaturation:		
		MICHAELIS-METEN EQUATION		
		Michaelis-Menten equation		
		steady-state assumption:		
		Important conclusion about Michae;ostmenten kinetics		
		Characteristics of Km,small Km,Large km		
		relationship of velocity of enzyme concentration:		
		Order of reaction:		
		Lineweaver-Burket plot		
		INHIBITION OF ENZYME ACTIVITY Reversible inhibitors		
		Irreversible inhibition		
		Competitive inhibition		
		Effect of km		
		Effect on lineweaver-Burke plot:		
		Statin drugsexamples of competitive inhibitors		
		Noncompetitive inhibition		
		Effect on Vmax		
Fn=1/m00	1 00 00	Effect on Km	0.20.42	122
Enzymes	Lec 08	Enzyme inhibitors as drugs	0:38:42	132
		REGULATION OF ENZYME ACTIVITY		
		Allosteric binding sites		
		Homotropic effec tors:		
		Heterotropic effectors		
		Feedback inhibition		
		Regulation of enzymes by covalent modification		
		phosphorylation and dephosphorylation		
		Induction & repression of enzymes synthesis		
		ENZYMES IN CLINICAL DIAGNOSIS		
		Isoenzymes and disease of the heart		
		Diagnosis of myocardial infarction		
		Diagnosis of myocardial illiarction		
Glycolysis tobe	Lec 09	glycolytic pathway	0:40:13	137
		Aerobic glycolysis		
		Transport of Glucose into the cells		
		Tissue specificity of GLUT gene expression		
		Na+- monosaccharide contransporter system		
		reactions of glycolysis, Hexokinase:		
		• ilucokinase		
		Regulation by fructose 6-phosphate and glucose:		
		Regulation by insulin,pfk-1		
		regulation by energy levels within the cell:		
		regulation by fructose 2,-6 bisphosphate:		
		Synthesis of 2,3-bisphosphologlycerate in red blood cells,		
		stravation		

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
BIOCHEMI STRY Glycolysis tobe	Lec 10	 substrate-level phosphorylation Covalent modulation of pyruvate kinase: pyruvate kinase deficiency: Reduction of pyruvate to lactate 	0:41:50	143
	Lec 11	 Lactate formation in muscle: Lactate consumption: Lactic acidosis: Energy yield from glycolysis HORMONAL REGULATION OF GLYCOLYSIS ALTERNATE FATES OF PYRUVATE Reduction of pyruvate to ethanol (microorganisms) 	0:18:35	64
Gluconeogenesis	lecture 12	 gluconeogenies substrates for gluconeogenesis The Cori Cycle Reactions unique to gluconeogenesis Summary of the reactions of glycolysis and gluconeogenesis Regulation of Gluconeogenesis 	0:47:43	163
Glycogen Metabolism tobe	Lec 13	 Glycogen Metabolism tobe Synthesis of Glycogen Glycogen Synthase Formation of branches in glycogen glycogenolysis Lysosomal degradation of glycogen Regulation of Glycogen synthesis and Degradation Glycogen storage Diseases 	0:31:17	107
Tricarboxylic acid and fructose metabolism	Lec 14	 Tricarboxylic Acid Cycle Reactions of the Tca cycle Mehcnism of arsenic poisoning Energy produced by the tca cycle regulation of the tca cycle Fructose Metabolism Fructokinase aldolase A aldolase B Sorbitol Metabolism III Galactose Metabolism Role of UDP-galactose in biosynthetic reactions LACTOSE SYNTHESIS 	0:45:05	154

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
BIOCHEMI STRY Pentose Phosphate Pathway and NADPH	Lec 15	 PENTOSE PHOSPHATE PATHWAY AND NADPH Function of PPP Irriversble Oxidative Reactions Reversible Non oxidative Reactions Uses of NADPH Cytochrome p450 monooxygenase system Mitochondrial system Microsomal system MPO System NADPH oxidase Synthesis of nitric oxide No synthase GLUCOSE6-P DEHYDROGENASE DEFICIENCY Role of G6PD in red blood cells Precipitation fcators in G6PD deficiency Favism G6PDA, G6PD mediterranean 	0:41:16	141
Fatty Acid and Triacylglycerol Metabolism	Lec 16	 Fatty Acid and Triacylglycerol Metabolism STRUCTUREOF FATTY ACIDS Saturation of fatty acids Essential fatty acids DE NOVO SYNTHESIS OF FATTY ACIDS Short-term regulation of acetyi coA carboxylase: Long-term regulation of acety I CoA carboxylase Fatty acid synthase:a multifunctional enzyme in eukaryotes major sources of the NADPH required for fatty acid synthesis elongation of fatty acid chains Desaturation of fatty acid chains Storage of fatty acids as components of triacylglycerols 	0:34:04	116
	Lec 17	 Structure of triacylglycerols(TAG) Storage of TAG,Glycerol Phosphate Shuttle Glycerol Phosphate Shuttle Different fates of TAG in the liver& adi adipose tissue Mobilization of Stored Fats and Oxidation of Fatty Acids Activation of hormone-sensitive lipase Acetyl CoA Carboxylase Fate of glycerol,Fate of fatty acids β-Oxidation of fatty acids Transport of long-chain fatty acids (LCFA) in to the mitochondria Inhibitor of the carnitine shuttle sources of carnitine Additional functions of carrnitine Carnitine deficiencies Entry of short-and medimum-chain fatty acids into the mitochondria Reactions of β-oxidation Emedium-chain fatty acyl CoA dehydrogenase(MCAD) deficiency 	0:38:47	132

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
BIOCHEMI STRY	Lec 19	 Oxidation of fatty acids with an odd number of carbons Oxidation of unsaturated fatty acids β-Oxidation in the peroxisome zellweger(cerebrohepatorenal) syndrome α-Oxidation of fatty acids Refsum disease Ketone Bodies: An alternative fuel for cells Synthesis of KETONE bodies by the liver HMG CoA synthase Excessive production of ketone bodies in diabtes mellitus Cholesterol and Steroid Metabolism 	0:40:43	137 138
Steroids		 Structure of Cholestrol Cholesterol and Steroid Metabolism Cholesteryl ester(CE) Synthesis of Cholestrol Synthesis of 3-hydroxy-3 methylglutaryl CoA(HMG CoA) HMG CoA reductase Synthesis of cholesterol Biosynthesis of Squalene Biosynthesis of Ianosterol Biosynthesis of cholesterol smith-Lemli-Opitz syndrome(SLOS) Regulation of cholesterol synthesis Sterol regulatory element-binidng protein, or SREBP Hormonal regulation,Inhibition by drugs Degradation of Cholestrol Bile acids and Bile Salts Structure of the bile acids Synthesis of bile acids rate-limiting step in bile acid synthesis Synthesis of bild salts Action of intestinal flora on bile salts Enterohepatic circulation Bile salt deficiency :choleithiasis obstruction of the biliary tract 		
Cholestrol and Steroids Metabolism	Lec 20	 Plasma lipoproteins Compostion of plasma lipoproteins Apolipoproteins Metabolism of chylomicrons Synthesis of apolipoproteins Apolipoprotein B-48 (apoB-48) Degradation of triacylglcerol by lipoparotein lipase type 1 hyperlipoproteinemia Formation of chylomicron remnants: Metabolism of very low density lipoproteins Fatty liver"(hepatic steatosis) Relase of VLDLs abetalipoproteinemia IDL, Apolipoprotein E familial type III hyperlipoproteinemia 	0:40:42	139

Subject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
BIOCHEMI STRY	Lec 21	Metabolism of low-density lipoproteins Receptors-mediated endocytosis: Wolman disease Ninemann-pick disease,type C Effect of endocytosed cholesterol on cellular cholesterol CoA:cholesterol acyltransferase(ACAT) Metabolism of high-density lipoproteins(HDL) Functions HDL function1 HDL function2 HDL function3 PCAT FAMILIAL Icat DEFICIENCY Key components of cholesterol homeostasis Role of lipoprotein (a) in heart disease	0:37:00	126
Amino Acids	Lec 22	 Amino Acids:Disposal of Nitorgen Transamination Amino acid pool Protein degradation: chemical signals for protein degradation: PEST sequences REMOVAL OF NITROGEN FROM AMINO ACIDS Transaminbation:the funneling of amino groups to glutamate Substrate specificity of aminotransferases: Alanine aminotransferase(ALT) Glutamate:pyruvate transaminaseGPT] Aspartate aminotransferase(AST) Mechanism of action of aminotransferases: Diagnostic value of plasmaaminotransferases Ammonia Glutamate dehydrogenase: Allosteric regulators Transport of ammonia to the liver 	0:41:07	140
	Lec 23	glutamine synthetase glutaminase Glucose/Alanine Cycle Urea Cycle Reactions of the Cycle ARGINASE Fate of Urea Overall Stoichiometry of the Urea Cycle Regulation of the Urea Cycle Metabolism of Ammonia Hereditary Hyperammonia Dificiency	0:32:51	112

ubject Name	Lecture Number	Lecture Content	Lecture Duration	File Size
BIOCHEMI	24 &25	Nucleotide metabolism	0:27:12	93
STRY	27 020	Nucleotide Structure	0:48:23	165
OTICI		Unusual Bases	0.40.20	100
Nucleotide		Nucleocides		
Metabolism		Synthesis of Purine Nucleotides		
Wetabollom		Synthesis of 5-Phosphoribosyl-1Pyrophosphate(PRPP)		
		Nine Steps in Purine Nucleotide Biosynthesis Conversion of IMP To AMP and CMP.		
		Conversion of IMP To AMP and GMP Myserbarelia Asid (MPA)		
		Mycophenolic Acid (MPA) Conversion of avaloasida managements as hatea to musloasida		
		Conversion of nucleoside monophosphates to nucleoside		
		Salvage pathway for purines		
		Conversion of purine bases to nucleotides:		
		Lesch-nyhan syndrome		
		Synthesis of deoxyribonucleotides		
		Ribonucleotide reductase		
		Degradation of purine nucleotides		
		Degradation of dietary nucleic acids		
		Diseses associated with purine degradation		
		Gout		
		Hyperuricemia		
		Primary gout		
		Lesch-nyhan syndrome		
		Secondary hyperuricemia		
		Treatment for gout		
		Allopurinol		
		Adenosine deaminase deficiency		
		Severe combined immunodeficiency disease(scid		
		Pyrimidine synthesis and degradation		
		Carbamoyl phosphate synthetase ii		
		Synthesis of orotic acid		
		Orotic aciduria		
		Synthesis of thymidine monophosphate form dump		
		Salvage of pyrimidines		
		Degradation of pyrimidine nucleotides		
				I

